
“Pushing SAS/AF ® and FRAME Entries in MVS to the Limit:
 The USEPA's AIRS Graphics System”

Thomas E. Link, U.S. Environmental Protection Agency, RTP, NC
M. Arthur Alexander III, SAS Institute, Cary, NC

First Of All, What Is “AIRS”?

The U.S. Environmental Protection Agency (USEPA)
depends on information -- lots of it -- to carry out its
mission to protect and improve the nation's air quality.
EPA's main collection of computerized information
about air pollution is AIRS, the Aerometric Information
Retrieval System. To paraphrase the late Carl Sagan
(who probably wished that he had never said it), the
AIRS database contains literally billions and billions of
values. These myriad numbers and words characterize
the state of our air.

The values in the AIRS database tell how much
pollution is released into the air by industry, commerce,
and just plain folks. They tell the ambient
concentration of pollutants in the air we breathe, and
they tell what administrative and legal actions have
been taken to fix pollution problems. AIRS gives the
50 states and many local environmental agencies
direct access to all the AIRS data, and direct control of
their own data. This means the states do not need to
develop their own computer systems for reporting air
pollution data to EPA. By analyzing the values in
AIRS, EPA and the states can determine the "health"
of our air, where the problems are, and how well
remedial actions are working. All of these are good
things.

But finding the right values among the billions, and
sifting through them to find out what they mean can be
daunting. AIRS has a vast array of interactive and
batch data reporting capabilities. They range in
complexity from easy-to-read, succinct reports of
summary data, to unformatted data files containing
thousands of characters in every one of its thousands
of records. The AIRS database reports are designed
to provide the detailed air pollution data that
environmental analysts and statisticians need, but the
reports can produce some very tall stacks of computer
printout. Sometimes they have to generate one pile of
printout just to ask the next question, which may lead
to yet another pile of printout. (We use the term
"printout" figuratively; many analysts view the reports
on a terminal screen instead of converting forests into
paper. But the point is the same: there's a LOT of
chaff among the grain.)

And Why Does It Need Gra phics?

Those individuals who use AIRS infrequently or began
recently may find the infrastructure of AIRS a bit
confusing, even overwhelming. Finding the right path
through the many "rooms" and "gardens" of AIRS can
be challenging. People who are whizzes at Lotus 1-2-3
and FreeLance may never have heard of these
"strange" mainframe terms like NATURAL, TSO,
CICS, VTAM, and LOGMODE. Is there help for these
poor souls?

Yes, there is! AIRS Graphics (AG) can help both
novice and experienced AIRS database users find the
proverbial needle in the haystack.

Inexperienced database users use AG to browse
through the database visually looking for certain kinds
of monitors and plants with certain characteristics. The
experienced user uses AG to quickly pinpoint a certain
type or range of data and then returns to the AIRS
database proper to request the most detailed data
listing or extraction available. In both cases would you
rather look at 1000 pages of computer printout when it
arrives tomorrow, or create a national map now, in 5
minutes, which depicts where 4500 Volatile Organic
Compound emission sources are located? You decide.

Why Did We Start Building the System with SAS?

The goal of the AIRS Graphics tool is to provide AIRS
users with the ability to access and inspect selected
AIRS data graphically, online and on demand. Since
we live in the real world, our design/programming team
immediately recognized that there were many ways to
provide this capability to our 2000 user network; and
most were not available to us. AIRS Graphics was
developed for our users, and in a development
environment of various software, hardware and
programming constraints. We asked our users and
ourselves lots of questions. Some of the questions
were about:

Hardware: Is the existing distribution of hardware
sufficient to justify an interactive graphics display
system? Graphics devices are expensive resources,
and may not be readily available below the level of
national and regional office. If the hardware is not in
place below the regional level, then the system is

basically going to emerge as an Executive Information
System for national and regional management.

Of course, this graphics system is intended to serve for
years to come, and it is likely that as older terminals go
through their life cycle and are replaced, the
concentration of graphics terminals will increase. This
would make for an interactive system with a steadily
increasing utilization rate over time.

The presence of graphics display terminals, even at
today's level, argues for the use of an interactive
system. At the same time, the presence of offices with
no graphics terminals makes a case for a batch
capability. Perhaps an interactive system with batch
capabilities will be desirable so that all offices can
benefit.

Software: In designing the software for AIRS Graphics,
we wanted an interface that would allow those who
knew little about computers to interact freely with the
data. We knew that we would need the flexibility to
construct custom menus and generate complex
graphics. We also had huge databases of varying
formats that needed to be manipulated in real time,
since we wanted to allow the user various parameter
selections to subset the data used to produce the
finished graphic. Since we were designing a system
for the future, we wanted a system with the ability to
evolve as computer graphics hardware improves.
After surveying the capabilities of products such as

ARCINFO, Telegraf, IBM GDDM, and SAS on
various platforms, we determined that the SAS system
fulfilled our requirements best and was readily
available on the current hardware platform.

The modules necessary for the AIRS Graphics system

were SAS/AF, SAS/GRAPH and the Base SAS
product. SAS/AF is a powerful, customizable menuing
facility that contains a complete programming
language called SCL (Screen Control Language). With
SAS/AF the programmer can custom design a menu
screen with complete control over screen colors and
the placement of data fields and informational labels.

SAS/GRAPH has a variety of map and chart-based,
data-driven graphics procedures that are easily
customized and enhanced. It also supports virtually
any graphics device available in today's market. The
Base product has all the data handling and
manipulation tools necessary to interact with the
existing databases. The combination of these
products, being part of the same overall system,
integrates seamlessly to allow the programmer
maximum flexibility in generating a system tailored to
the needs of the end user.
What The Users Want: It was assumed that they really
wanted a high-powered, interactive system. While this

is probably true of the regional and national offices, it
may or may not be true of the lower level offices.
Many managers may prefer to work with batch
hardcopies, especially those who still feel
uncomfortable at a terminal. There are always times
when hardcopies are essential, so even an interactive
display system should have the capability of generating
hardcopy outputs when necessary.

However, we have here the same factor that was
present in the hardware discussion, namely the force of
change. Managers are getting increasingly
comfortable in front of the terminal and that trend is
certain to continue. The emerging generation of
management is likely to demand on-line capability, and
may not be satisfied with a batch system designed to
meet the needs of a less-demanding group.

System Needs Vs. Desires: This is an issue common
to most major projects. Resource considerations
dictate decisions, and AIRS Graphics was no
exception. We identified the minimum acceptable
capabilities of a graphics system and began work. As
the system went into production, users asked for
changes and enhancements. Our philosophy has been
to provide the program additions and enhancements
that will benefit and be used by the largest percentage
of our user community.

Has AIRS Graphics wo rked for users?

Four years since it's initial May 1993 production date,
with more than 1000 registered users of AG worldwide,
who have submitted more than a million data queries
and produced over 100,000 actual graphic plots--we
think, yes--it has and is still working. We’re still
receiv ing comments and suggestions for
improvements, new bells and whistles.

How Do You Keep The Music Play ing?

Users always want NEW, EASIER, FASTER--they
want "Point 'N' Click"--even in a mainframe
environment. Within the constraints of our closed
operating environment, and the USEPA's nationally
supported software packages, how could we provide
this additional functionality?

AIRS Graphics "Point 'N' Click"

To Frame Or Not To Frame? -- Version 6.08 of the
SAS System introduced SAS/AF FRAME Entries.
Many SAS developers mistakenly believe that FRAME
Entries do not work on MVS. This misconception is the
result of two fundamental problems. First, to build a
FRAME entry, the programmer's display device must
be capable of displaying vector graphics. If attempted
on a character-based device, the frame build display

will not open. Second, the earliest releases of version
6.08 (before TS415) had several annoying refresh
problems, which made extensive use of frames
unacceptable. Even developers who used vector
graphics capable devices, but who created frame
entries with certain object combinations in TS405 or
TS410, might have abandoned frame entries believing
them to be incompatible with MVS.

Even with the early problems, the capabilities that
FRAME entries could add to our AF program based
system were too good to ignore. In a frame entry, we
would be able to place extended tables anywhere on
the screen, not just at the bottom as in program entries.
In addition, multiple extended tables could be used on
the same screen. Another giant leap over the program
entry was the ability to display graphical output on the
same screen as text elements such as entry fields and
extended tables. These two possibilities alone, made
us interested in exploring the usage of frame entries in
spite of the initial problems.

Our very first use of a FRAME entry in the AIRS
Graphics system came when we decided to introduce
the option of allowing users to make multiple county
selections as a data subset item. It is easier for the
user to visualize the desired county cluster subset by
selecting the counties from a map than from a list of
county names. This first frame displayed a table of
county names alongside a map of the counties
displayed in the list. The user still selected the subset
from the text list, but did not have to guess as to the
geographic clustering of the output selected. If only we
could let the user click on the map itself to make
selections instead of typing in county numbers or
selecting items from a list.

Where No Hotspot Has Gone Before

Screen objects that return information about the object
when the object is 'selected' are called hotspots. The
SAS/Graph Output Object allows the programmer to
create 'segment hotspots' for polygons in a static map.
So, you could create a selectable U.S. map of the
states and store it in a catalog. Next you could
interactively define a hotspot for each state polygon on
the map. Finally, if you never change the map, when
a user selects a state from the map, you can
programmatically return the name of the hotspot using
the _get_value_ method. But what if the map is
generated dynamically and has the potential to change
depending on the user's selection? What if you want
to add annotation, such as markers for specific sites?
Clearly static hotspots will not suffice here. If we have
the ability to create dynamic maps, we need the ability
to generate dynamic hotspots as well.

The FRAME Graphics Object has this ability for graphs
and charts. Geographic Information Systems (GIS)
have this ability for maps. Why couldn't we do it for
maps created with PROC GMAP and displayed in the
SAS/Graph Output Object? The input to PROC GMAP
is a response data set and a map data set. Somehow,
GMAP combines these two sources to produce an
output stream, which SAS can then display as a map
on which the data information is overlaid. Since the
unknown in this process was the means by which SAS
combined the two files into one, and since the resulting
file had meaning only in the context of generating the
graphical output, we had to approach the process as a
'black box’. We had input which we could study in
detail. We had output for which we had very little
information. Was there anything in the output stream
file, which could be used to tie the polygon information
back to the data which created it?

It took many hours of experimentation, of backing up
and coming back at the problem from different angles,
but with persistence and some key bits of information
supplied by Bill Powers and Jeff Cartier of SAS
Institute, we were able to crack the code. We have
already mentioned the _get_value_ method, which
gives us hotspot information, but we have no hotspots.
The only other SAS/Graph Output Object method,
which gives us any information when the object is
selected, is _get_info_. Frankly, at first glance,
_get_info_ didn't seem to help much. When a point on
a graphic is selected, the _get_info_ method returns an
SCL list, which contains the following information
related to the selected point on the graphic:

Item Description

X the X coordinate of the selection in pixels
Y the Y coordinate of the selection in pixels
TEXT the text of the graph segment, if the selected point

contains text
SPOT a list defining a selected hotspot, if the selected

point is a hotspot
SPOTID the number of the graph segment within the graph

(beginning with 1)
SPOTTYPE a number identifying the type of graph segment

selected

Since the X and Y values are related to the graph's
position on the screen, those values are of little value
to us. The TEXT value could be of some value if we
wanted to use a label of some kind. SPOT is related to
segment hotspots, and is of no value since we don't
have any. SPOTTYPE could help us programmatically
be sure that a polygon was selected. All that is left is
SPOTID, the number of the graph segment within the
graph, beginning with 1. This seems to imply that
graphical output is a sequential flow of graphics
segments beginning at 1. If the output segment has
some predictable and controllable ordering, it might be

possible to tie the order back to the data used to
generate the output.

To make a long story short, it worked. The items in the
output stream are predictable. For GMAP output, if a
graphic has a border, the border is segment #1,
followed by titles, footnotes, etc. and then the map
polygons, always in the same order. So by strictly
controlling the number of elements which precede the
map polygons, and skipping over those segments
(spotids) we can sequentially identify the map polygons
from the SPOTID returned by _get_info_. If we make
sure that the data has the same ordering as the map
polygon data, we can use the segment value to lookup
the corresponding data value from the response data
set. From the standpoint of United States maps, the
spotid of any map polygon can be tied back to the
FIPS State and FIPS County codes. Once these
values are known, any data that is indexed by state
and county is then available to the programmer, all by
clicking on the desired area.

We were excited and feeling pretty smart. However,
human nature being what it is, we wanted more. What
if we had markers on the map? If we could select a
single marker and identify the specific site related to
that marker, we would be approaching the functionality
of a GIS (and in our own minds approaching the status
of genius). Could we add annotated markers to our
graph without upsetting the predictability of our output
data file? Again, the answer is 'Yes'. The annotated
markers are drawn in order immediately after the last
map polygon is generated. So, by subtracting the title,
footnote, etc. segments AND the map polygon
segments from the SPOTID, the sequential ordering of
the annotated markers could be predicted. The
annotate data set is in the same order as the marker
segments, so the first annotated marker references the
first record in the annotate data set.

We were on a roll. We already knew that the Graphics
Object would give us dynamic hotspotting for graphical
data. We also knew that individual fields and rows
were selectable for extended table data. With the
addition of this method for dynamic hotspot simulation
on maps, the pieces for the new AIRS Graphics "Point
'N' Click" system was beginning to fall into place.

"Point 'N' Click" Design

The system would be composed of three main data
reporting areas for summary data: tabular form, bar
charts and choropleth maps. In additional to national,
state and county scales, the USEPA groups states into
ten geographic regions. It therefore made sense to
construct the three data display paths in a hierarchical
fashion with this geographic relationship in mind. The
user, starting at the national level, by selecting a row

from a table, a bar on a chart, or a polygon on a map
could 'drill down' to the next lower geographic level
using the same display type.

The AIRS data, which we would be using, consists
primarily of two databases: one for plant emission data
and the other for monitoring data. Within each of
these databases are values for seven pollutants called
'Criteria Pollutants'. We wanted the user to be able to
select a database, pick any or all of these pollutants
and display the data in either of the three display
formats. We also wanted the flexibility to switch to any
geographic level and the ability to change from tables
to maps to graphs from any point in the system without
losing the selected data subset. This meant that we
had to be able to jump from a frame in a given
hierarchy to any other hierarchy without having to
return to the previous frame or to some main menu in
between.

The ability to select a data subset from any screen in
the system was accomplished by adding a system of
pull down menus to each frame. Pmenu selections
would invoke frames, which would allow database
selection, pollutant selection, geographic coverage
selection and display format selection from lists, radio
boxes and check boxes. The final selections would be
stored in the Global Environment List and thereby be
available to all frames at any point in the process.

Since we wanted to be able to jump to any frame from
any other frame in the system, closing down each
frame before we jumped, Call Display would not do.
Call GOTO seemed the likely mechanism, but Call
GOTO did not allow parameter passing. Reason
number 2 for using the Global Environment List.

In addition to pmenus, each frame would have radio
buttons for single-click reselection of pollutant subset
and update of the display. Icons would likewise allow
a single-click jump from map to chart to table to map
using the same geographical and data subset.
Selection of a table row, a graph bar or a map polygon
would take the users to the next geographic subset.
Just before the jump to the next frame, the altered
subset is written to the Global Environment List. When
the next frame is invoked, the Global Environment List
is read and the necessary where clauses constructed
to display the representative data subset.

The result is a system with Graphical User Interface
running on the mainframe. The user can browse AIRS
plant and monitor data, subset it, jump from one
display type to another, from a national level all the
way to a single site without ever touching the keyboard;
one click at a time.

Main Menu Screen

Main menu Illustrating Coverage Selection

US Map - Drill Down by Selecting Any Polygon

Example Table - Drill Down by Selecting Row
Cahnge View by Selecting Bar or Icon Map

Bar Chart View of Same Data
Drill Down by Selecting Bar

Map View of Same Data
Marker Selection Populates Table with Detail

What Will AIRS Graphics Offer in The Future?

We know that AIRS Graphics doesn't do everything
and will not provide the detail or 'horsepower' that
some users will need. We also know that allowing a
user too free a hand can result in less than meaningful
graphs, misleading reports, or reams of unwanted
output. We have purposefully limited our users to a
selection of graph types and available data. AIRS
Graphics doesn't try to be everything to 100% of our
users; AG tries to be 75% of what 75% of our users
want. The other 25% are what the future of AG is
about. AIRS Graphics will evolve to meet changing
needs of the users and new capabilities of the base
software. As mentioned earlier AIRS Graphics is
currently available to all 50 States. Efforts are
underway to assist local air pollution control agencies
at the county level with access to AIRS -- potentially
3300 new user organizations. International air pollution
data from the World Health Organization will continue
to necessitate new international geographic coverages
and solutions to specialized mapping problems.

Being resourceful and innovative within the
hardware/software constraints of yesterday inspired
additional system functionality made possible with
"Point 'N' Click". But with new products, faster
processors, lower communications costs, and
worldwide demand for air pollution data, we're working
on new solutions and systems.

The AIRS Graphics Re-engineering Project--now
underway--will migrate the entire system to UNIX and
allow for Internet access through any Web browser.

The new SAS/IntrNet product will figure prominently in
this new incarnation of AIRS Graphics, and allow public
access to EPA's mother of all air pollution
databases--AIRS--in graphic mode, and in ways which
were impossible, even six months ago.

References:

SAS, SAS/AF, SAS/GRAPH and SAS/IntrNet are
registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries.

Appendix

An example of the algorithm used to simulate dynamic
hotspots on the AIRS Graphics “Point ‘N’ Click” Maps
is contained in the following FRAME screen along with
the SCL code labeled Mapexamp.scl. The frame
consists of a SAS/Graph Output Object named ‘map’.

Figure 1 illustrates the frame as it is first displayed,
with nothing selected.

Figure 2 illustrates the selection of a blank area within
a county polygon.

Figure 3 illustrates the selection of a marker
representing a single plant whose coordinates are
unique in the data set.

Figure 4 illustrates the selection of a marker
representing more than one plant with duplicate
coordinates.

Algorithm Notes:

Since the EPA data has unprojected coordinates, we
used the unprojected SAS map data from
maps.counties. The Density parameter is used to
reduce the number of points used in each polygon. A
density of 3 and under is usually sufficient at this
resolution and helps the map render faster than using
all densities.

Parts of the Submit Block in the init section of the code
is placed there for illustrative purposes. In a production
system, the frequency data related to the map
polygons would be run previously and stored in saved
SCL lists to improve response time.

Figure 1 .

 Figure 2.

Figure 3.

Figure 4.

Only the plant name is returned in this example.
However, it should be evident that any information
from the corresponding data set could be returned, as
well as, information in related data sets which are
keyed by any of the unique data values retrieved from
this data set.

In addition, it is a simple task to ‘drill down’ to any
county level once the state and county FIPS codes are
known. A similar algorithm could be applied to the
county data to display the county data and make the
resulting markers selectable.

MAPSAMP. SCL:

length spotid index dupcoord 8;
init:
 rc=rc;
 dupwhr=dupwhr;
 whrc=whrc;
 submit continue;
 libname sugi 'e:\sugi';
 goptions gunit=pct device=win;
 data tennmap;
 retain dtype 'MAP';
 set maps.counties(where=(state =47 and density le 3));
 run;
/* determine the number of points per segment for each county */
 proc freq data=tennmap;
 tables county*segment / noprint out=ctysegs;
 run;
/* discard any segments with only one point per segment */
 data ctysegs;
 set ctysegs;
 where count>1;
 run;
/* prepare to remove plants with duplicate coordinates */
/* from the annotate file and store them in separate */
/* files to use for lookup later on. */
 proc sort data=sugi.plants(where=(state=47))
 out=plbydups;by dupcoord;run;
/* create a primary annotate file (which contains one */
/* point for each xy coodinate pair in the data set), */
/* a duplicate site data set, and a data set for plants */
/* records with missing coordinates. */
 data annoplt pltdups plnocrds;
 length dtype $4 xsys ysys hsys position when $1
 color function style text $8 size x y 8;
 set plbydups;
 by dupcoord;
 function='symbol';
 style='marker';
 text='U';
 xsys='2';ysys='2';hsys='3';position='5';
 size=1;
 when='B'; * to be able to see the county map lines;
 color='green';
 dtype='PLT';
 if xycoord='N' then output plnocrds;
 else do;
 if dupcoord=0 then output annoplt;
 else do;
 if first.dupcoord then do;
 output annoplt;
 output pltdups;
 end;
 else output pltdups;
 end;
 end;
 run;
/* combine the map data set and the annotate data set */
/* to project all points together. */
 data all;
 set tennmap annoplt;
 run;
/* project the unprojected data */
 proc gproject data=all out=allout;
 id state county segment;
 run;
/* replace any previous graphics in the catalog */
 goptions goutmode=replace nodisplay;

 pattern v=e c=black r=99999;

 title f=swiss h=5 c=blue
 'Tennessee Plants with County Outlines';
 title2 f=swiss h=4 c=Red

 'Click on County or Marker for Additional Information';

/* create the empty map with annotated markers */
 proc gmap data=allout(where=(dtype='MAP'))
 map=allout(where=(dtype='MAP')) all;
 id state county segment;
 choro county/nolegend name='plantmap'
 annotate=allout(where=(dtype='PLT'));
 run;
 quit;

/* reset goptions to default FRAME entry mode */
 goptions display goutmode=append;
 endsubmit;

/* store the map polygon information currently stored */
/* in ctysegs in an scl list for retrieval when areas */
/* of the map are selected. */
 clid=makelist();
 dsid=open('ctysegs');
 do index=1 to attrn(dsid,'nlobs');
 rc=fetchobs(dsid,index);
 clid=insertn(clid,getvarn(dsid,1),-1);
 end;
 dsid=close(dsid);
 call notify('map','_set_graph_','work.gseg.plantmap.grseg');
return;

map:
 call notify('map','_get_info_',infoid);
 displist=makelist();
 spotid=getnitemn(infoid,'spotid');
/* A marker is selected */
 if spotid gt listlen(clid)+2 then do;
 dsid=open('annoplt');
 index=spotid-listlen(clid)-2; * 2 titles;
 rc=fetchobs(dsid,index);
 dupcoord=getvarn(dsid,varnum(dsid,'dupcoord'));
 if (dupcoord) then do;
 dupid=open('pltdups');
 dupwhr=where(dupid,'dupcoord='||put(dupcoord,4.));
 do while(fetch(dupid)=0);
 displist=insertc(displist,
 getvarc(dupid,varnum(dupid,'plt_name')));
 end;
 end;
 else
 displist=insertc(displist,
 getvarc(dsid,varnum(dsid,'plt_name')));
 if dupid then dupid=close(dupid);
 if dsid then dsid=close(dsid);
 end;
/* A county polygon is selected */
 else if spotid gt 2 then do;
 county=getitemn(clid,spotid-2);
 ctid=open('maps.cntyname');
 whrc=where(ctid,'state=47 and county='||put(county,3.));
 rc=fetch(ctid);
 cntyname=getvarc(ctid,varnum(ctid,'countynm'));
 displist=insertc(displist,cntyname||' County Polygon
Selected');
 ctid=close(ctid);
 end;
/* A Title is selected */
 else if spotid in (1,2) then
 displist=insertc(displist,
 'Title selected, select a polygon or a marker');
/* A blank area on map is selected */
 else displist=insertc(displist,
 'You must select a polygon or a marker');

/* display popup and clean up list */
 rc=popmenu(displist);
 displist=dellist(displist);
return;

term:
 clid=dellist(clid);
return;

Contents of Plants Data Set :

-----Variables Ordered by Position-----

Variable Type Len Pos Format Label

ƒƒƒ
1 REGION Num 5 0 2. EPA Region

2 STABBR Char 2 5 State Abbrev.

3 STATE Num 5 7 3. FIPS State Code

4 COUNTY Num 5 12 3. FIPS County Code

5 PLT_ID Char 4 17 Plant ID (NEDS)

6 PLT_CDS Char 5 21 Plant ID (CDS)

7 PLT_NAME Char 40 26 Plant Name

8 PLT_ADDR Char 30 66 Plant Street Address

9 PLT_CLS Char 2 96 Plant Classification

10 PLT_CST Char 1 98 Plant Compliance Status

11 OPST Char 1 99 Plant Operating Status

12 SIC Num 5 100 Z4. SIC Code

13 SICD Char 25 105 SIC Description

14 PLT_CITC Char 5 130 City Code

15 PLT_CITY Char 30 135 City Name

16 PLT_ZIP Char 5 165 Plant ZIP Code

17 LON Num 5 170 7. Longitude (d-m-s)

18 LAT Num 5 175 7. Latitude (d-m-s)

19 X Num 5 180 Longitude (radians)

20 Y Num 5 185 Latitude (radians)

21 SIP Char 1 190 SIP Plant?

22 LARGE Char 1 191 Large Plant? (Emis.)

23 MERGED Char 1 192 Merged Plant?

24 XYCOORD Char 1 193 XY Coords?

25 DUPCOORD Num 5 194 5. Dup Coords Flag

26 BADX Char 1 199 X Coord Bad?

27 BADY Char 1 200 Y Coord Bad?

28 PLT_ECON Char 20 201 Emissions Contact

29 DTYPE Char 4 221 Data Type

30 YEAR Num 5 225 2. Emis. Inventory Year

31 MINEMIS Num 5 230 8.2 Min.Pollutant Emissions

32 MAXEMIS Num 5 235 8.2 Max. Pollutant Emissions

33 TOTEMIS Num 5 240 8.2 Total Pollutant Emissions

34 CO Num 5 245 8.2 CO

35 NO2 Num 5 250 8.2 NO2

36 SO2 Num 5 255 8.2 SO2

37 VOC Num 5 260 8.2 VOC

38 PT Num 5 265 8.2 PT

39 PM10 Num 5 270 8.2 PM10

40 PB Num 5 275 8.3 Lead

Duplicate coordinate values have been covered in the
example. The only other complication in this overall
scheme is a map where markers are so dense that they
become stacked. These markers do not have
duplicate coordinates, however they are so close
together that only the topmost markers are accessible.
To deal with this problem, we added a zoom function
which allows the user to pick a radius, select a marker
for the center point and redraw a circular subset of the
data around that point. This has the effect of
spreading out the markers and, at some zoom level,
will allow the selection of the individual markers even
in areas of high density.

The following screens show a county level map and a
5-mile radius subset around a selected marker:

